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ABSTRACT 

A sufficient condition for a convex cone C in a Hausdorff topological linear 
space is given in order to ensure the existence of cone-maximal points. The 
condition becomes a necessary one in a topological linear space with a 
countable local base. that is, if the space is pseudometrizable. The paper extends 
known results to infinite dimensions and we answer Corley's question in the 
affirmative with the exception of a pathological case. 

I. Introduction 

In this note  we s tudy the exis tence  of co ne -ma x ima l  poin ts  in topo log ica l  

l inear  spaces  in the sense desc r ibed  below.  T h r o u g h o u t  the p a p e r  Y is a 

topo log ica l  l inear  space over  reals  and  C C_ Y is a convex  cone  (i.e., tC C C for  

t_>-0 and C is n o n e m p t y  and convex).  F o r  y~ ,y_~  Y we wri te  y~_-<cy.~ if 

y 2 -  yl ~ C. Subsequen t ly  _-< will be wri t ten  ins tead  of =< c. The  re la t ion  =< is 

reflexive and since C is convex  we get  that  _<- is also t ransi t ive ,  but  not  

necessar i ly  an t i symmet r i c .  If C is a po in t ed  cone,  i.e. C n ( -  C)  = {0}, then < is 

an t i symmet r i c .  

W e  say that  an e l emen t  e of a subset  B of Y is maximal  up to indif ference 

with respec t  to C (or in s h o r t / - m a x i m a l )  in B if w h e n e v e r  e =< y, for some  y ~ B, 

then  y <_-e, and we wri te  e G E c ( B )  [2,5,9].  See,  for ins tance,  [10,18] for 

nonconica l  o rder ings .  

A n  e l emen t  e of a subse t  B of Y is said to be max imal  in B if {b E B ; e  <-_ 

b ,b ~  e } = ~ ,  and  we wri te  e ~ e c ( B )  [1 ,4 ,11,15,17,20] .  

Both  def ini t ions  coincide  when the cone C is po in ted .  

M o r e  r e fe rences  can be found  in [19] and in the  a b o v e - m e n t i o n e d  papers .  
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Throughout the paper R and R" denote the space of real numbers and 

n-dimensional Euclidean space, respectively. Moreover, A is the closure of a 

subset A in Y and AC denotes complementation. 

Let us note that even for a finite set /3 C_ R 2, ec(B) may be empty. However 

Yu [20] proved that in R", if (~ is pointed and B is nonempty and compact, then 

ec(B) ( = Ec(B) in this case) is nonempty. Next Hartley [9] showed that in R ", 

Ec(B) is nonempty for every convex cone C and nonempty, C-compact subset 

B (i.e. B N (y + C) is nonempty, compact for some y E Y). Hence if B is a 

nonempty compact subset of R ° then Ec(B)~ 0 for every convex cone in R". 

Corley [5] extended the result of Yu to infinite dimensions, namely he proved 

that if Y is a real topological linear space and C' is a pointed convex cone then 

ec(B) ( = Ec(B) in this case) is nonempty for every nonempty C-semicompact 

set B, where B is said to be C-semicompact if every open cover of B of the form 

{(C+ yi)C:y, E B, i E I} has a finite subcover. Corley has asked the question, 

whether Hartley's result can be extended to infinite dimensions, namely: 

Is it true that Ec(B)~ 0 for every convex cone C in a real topological space 

Y, whenever B is nonempty and compact? 

We answer this question in the affirmative with an exception of a rather 

peculiar case (Theorem 2.2). All results cited above follow easily from Theorem 

2.2. 
Many authors have studied the existence of maximal points in order to relax 

the requirement of compactness on B. In every case stronger conditions have to 

be imposed on the cone. For instance, in [4] it is shown that if C is a closed 

convex cone in a Banach space Y, satisfying the (~r)-property (i.e., there exists a 

continuous functional jr on Y with f(y)=< 0 for each y @ C such that for every 

e > 0 the set {y E C : f ( y )  > - e } ,  if nonempty, is relatively weakly compact in 

Y) then ec(B) ( = Ec(B) in this case) is nonempty for every nonempty, weakly 

closed and bounded above set B in Y. Another result in R" can be found in 

[1,11,12], to name only a few. 
Moreover, observe that even for a closed, convex, pointed cone C in a Banach 

space, Ec(B) ( = ec(B) in this case) may be empty for a closed and bounded set 

B;  and simple examples in R 2 show that Ec(B) may be empty for a compact set 

B if C is closed and pointed but not convex. Both examples are given in [5]. 

2. Results  

We shall need the following theorem, proved by Borwein [3, Theorem lc] 

which is the next generalization of existence results in infinite dimensions. Let us 
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note here that the same conclusion is obtained in [10, Theorem 2.3, Corollary 

2.8] for a preorder relation (i.e., reflexive and transitive binary relation) on a 

normed space Y, with closed upper sections. 

THEOREM 2.1. Let Y be a topological linear space, and C be a closed, convex 

cone in Y. Then Ec(B) is nonempty whenever a subset B of Y is nonempty and 

compact. 

If C is a convex cone then by lin C we denote the maximal linear subspace 

contained in C, i.e., lin C = C N ( -  C). If C is a closed convex cone then lin C is 

a closed subspace. 

Now we are going to prove that the crucial assumption on a convex cone C in 

a topological linear space Y, for Ec(B) to be nonempty, for any nonempty and 

compact subset B of Y, is: 

For every closed subspace L of lin t~, if C G L 

(*) is a linear subspace then so is C N L. 

The above condition is equivalent to an apparently stronger statement in 

which we demand that the condition (*) is satisfied for any closed subspace L in 

Y. Indeed, if L is a closed subspace in Y such that C N L is linear, then C N L is 

a closed subspace of lin C. Moreover C n C n L = C N L. Using the condition 

(*), C n L = C n C N L must be a linear subspace as well. 

REMARK 2.1. The condition (*) is fulfilled in any finite-dimensional space Y 

for every convex cone C. 

PROOF. Using the separation theorem in finite-dimensional spaces [12, p. 15] 

we get t h a t C n L = C N L .  • 

REMARK 2.2. The condition (*) is satisfied in any real topological space Y if: 

(i) C is a closed convex cone; 

(ii) C is a pointed, convex cone; 

(iii) C\{0} is an open, convex cone. 

PROOF. (i) and (ii) are obvious. 

To prove (iii) let us assume that L is a closed subspace of Y such that C n L is 

linear. As C ' =  C/{0} is open and convex we get that C 'A  L is an open convex 

cone in C n L. Applying the separation theorem [12, p. 63] to the subset C'  n L 

i n C n L w e g e t t h a t C n L = C n L .  • 

The next example shows that in any infinite-dimensional normed space Y 
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there exists a convex cone C with int C / Q ,  which does not satisfy the condition 
(,). 

EXAMPLE 2.1. Let Y be an infinite-dimensional normed space and f :  Y--~R 

be a continuous linear functional. Put C, = {0} U {y E Y : f (y )  < 0}. As ke r r  = 

{y E Y : f ( y ) =  0} is an infinite dimensional, closed subspace of Y, we can find a 

bounded sequence {e, }~=, consisting of linear independent elements in kerr,  and 

the closed subspace L generated by {e,}~=,, i.e. L = span{e,}~=,, is contained in 

kerr.  Define y, = e, + (n + 1) 'e,+, for n = 1,2 . . . .  and the convex cone 

C 2 = { 2 t ,  Y . + t e ' : t " ~ R ' n = l ' 2 . = ,  . . . . .  k,t<=O, kisanaturalnumber}C_L. 

Then C2 is not a linear space, since - e, E C2 and e~ ~ C.., but C'2 = L. Consider 

C = C~ + C2 which is a convex cone and Q / int CL C_ int C. It is easy to check 

that C n L = C_,, hence C does not satisfy the condition (*). • 

Let us note that we can give the same construction as in Example 2.1 in any 

topological linear space Y with nontrivial, linear, continuous functionals, which 

admits a bounded subset contained in no finite-dimensional linear subspace of Y. 

One may also observe that every infinite-dimensional space Y contains a 

pointed convex cone C such that C" = Y (see [12, p. I0], [14, p. 454]). 

THEOREM 2.2. Let Y be a Hausdorff topological linear space and C be a convex 
cone satisfying the condition (*). Then for every nonempty, compact set B, Ec(B ) 
is nonempty. 

PROOF. Assume that B is a nonempty compact set in Y. The proof will go by 

transfinite induction. If C is a linear space then obviously Ec(B) = B / O .  
Assume that C is not a linear space. Hence C' is also not a linear space by the 

assumption (*). We define the closed subspace L~ = lin ~+c y, the convex cone 

C~ = C n L, and by Theorem 2.1 we have that there exists e, ~ Ee(B). If C~ is a 

linear space we finish at this stage since e~ E Ec(B) as well. If C~ is not a linear 

space, then by the assumption (*) C~ cannot be linear too, and we define the 

nonempty compact set B1 = B n (L, + e,), the subspace L2 = lin CI,CL,, the 

convex cone C2 = C~ n L2 and by Theorem 2.1 we get an element e2 E Eq(B,). 
In general, let a be an arbitrary ordinal number. Assume that we have defined 

the subspaces L0, convex cones Co C_ L0, nonempty compact sets B0 and 

elements e0 E B, for every /3 < a. 

I. a -  1 exists. 

(i) If the cone C~_~ is a linear space we finish at the a - 1  stage. 
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(ii) If the cone Ca ~ is not a linear space then by the assumption (*) C~_~ is not 

a linear space as well and we define the a -s tage  as follows: 

= Co_, ,  L~ ~, the space L~ lin c 

the convex cone Ca = Ca-t N La, 

an arbitrary e lement  e~ ~ Ec-~,(B~_~), which exists by Theorem 2.1, 

the nonempty  compact  set Ba -- B~_~ n (L, + eo). 

II. a is a limit ordinal. 

(i) If for some fl < a, C~ is a linear space, we do not construct the a-s tage.  

(ii) If for every /3 < a, Co is not a linear space, then we define: 

the subspace L~ = n ~<~ L~, 

the convex cone Ca = C n n ~<~ L~ ( = n ~ <~ c~ ), 

the nonempty  compact  set B,, = A~<~B~, as {B~}~<o is a decreasing family of 

nonempty  compact  sets, 

the e lement  e~ is arbitrary in E q  (Ba), which is nonempty  by Theorem 2.1. 

We first show for every ordinal number  a such that a - 1 exists that we have 

Eco(B~)C_ Eq_,(B~- O. We shall show first that Eco(B~)C_ Ec~_,(B~). Indeed,  if 

x E Ec.(B~) and b - x @ C~-~ for some b E B~ then both x and b belong to B~, 

which means that x, b E L~ + e~. Hence b - x E L~ n Ca ~ = Ca, which implies 

that x - b E C~ C_ Ca-~, thus x E Eq_,(B~). 
Now we show that Eq_,(B~ ) C_ Eq_,(B~ ~). Let x E Ec~_,(B~) and b - x E C~_~ 

for some bEB~_~.  Then x = l ~ + e ~  for some I ~ E L o  and b - l ~ - e ~ =  

b - x E C ~ _ ~ .  Hence b - e ~ E C ~ _ t + L ~  = C o - ~ + l i n C a  ~_CC~-~. Since by the 

construction, e, E Ec-TS,(B~-O and b E B~_j we must have that e ~ -  b E C,_~. 

Thus we get that b - e ~ E l i n C , - ~ = L ~  and b E B ~ _ ~ N ( L ~ + e ~ ) = B ~ .  As 

x E Eq_,(B,,) we obtain that x - b E C~_~, which means that x E Eq_,(B,, O. 
If a is a limit ordinal then Eco(B~)C Ec(B). Indeed, let x E Eco(B~) and 

b - x E C for some b E B. We shall show by transfinite induction that b E Be 

a n d b - x E C n L o f o r e v e r y / 3 < a .  A s x E B ~ = n ~ < , B e w e g e t t h a t x E B ~ =  

B n ( L , + e t )  a n d x = l ~ + e ,  for s o m e l ~ E L i .  Then b - l ~ - e ~ = b - x ~ C a n d  

b -  e~ E C +  L~ = C + l i n  C C t~. By the construction e~ E Ee(B) so we must 

have that e~ - b E C, which implies b - et E lin C' = L~. Hence 

b ~ B A ( L ~ + e O = B ,  and b - x = b - l ~ - e ~ E L ~ + L ~ = L 1 ,  thus b - x E  
CDL~.  

Fix/3 < a and assume that our hypothesis is true for 3, </3, i.e. b U B, and 

b - x E C n L,  for every T </3. There are again two cases: 

(a)/3- 1 exists. 

In this case b E B~_~ and b - x ~ C n L~_~. As x E B~ C_ L~ + e, we have that 
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x = l e + e e  for some I e E L  e and b - l e - e e = b - x E C n L 0 _ ~ = C ~ _ ~ .  Hence 

b - e~ E C~_~ + Le = Co-,  + lin C e ~ _C Ce_,. 

As eo E Ec-~_,(Bo_~), b ~ B~_~ we must have that ee - b E'Ce_;, which implies 

that b - e e E l i n C o _ ~ - L o .  Hence b E B o _ ~ n ( L o + e e ) = B e  and b - x =  

b - l ~ - e  e E L  e + L  e which means that b - x E C N L  e. 

(b) /3 is a limit ordinal. By the definition of Be in this case we have that 

B e = B n N~<0(L , + e,) = ["I,<,B,, so if b E B, for every 3' </3  then b ~ Be as 

well. Moreover L e = n , < e L , ,  so b - x  E C n N ,< ~ L ,  = C n L~. 

(a) and (b) prove that b C Be and b - x E C n L e for every /3 < a. Hence 

b E N~<~B e = Bo and b -  x E C n n~<oLe = Ca and therefore we must have 

x - b ~ Co C_ C, which means that x E Ec(B)  and completes the proof of the 

fact that Eq(Bo)C_ Ec(B) if a is a limit ordinal. 

By the above consideration we can see that Eco (B~) C_ Ec(B)  for every ordinal 

a. Therefore in order to prove that Ec(B) # ~ it is sufficient to show that there 

exists a with Ec~ (Be)#  O. However our transfinite sequence of the subspaces 

must stop (see Remark 2.3); when it does, it can only be because the 

corresponding cone Ca is a linear subspace and in this case ~3 # B~ =Eca (B). • 

REMARK 2.3. The result that the process of constructing the transfinite 

sequence of linear subspaces must stop follows from the Axiom of Replacement 

in the presence of the other axioms of Zermeio-Fraenkel  set theory, if one uses 

the yon Neumann definition of the ordinal numbers [8]. This means that we do 

not use the Axiom of Choice here. However, we construct the transfinite 

sequence of elements, e~ E B for a an ordinal number, by Theorem 2.1, which 

depends upon the Axiom of Choice. Precisely, Borwein [3, Theorem 7] proved 

that the Axiom of Choice is equivalent to the existence of maximal points for 

compact, convex sets. 

The next result is a converse to Theorem 2.2 for topological linear spaces with 

the First Axiom of Countability, which is equivalent to pseudometrizability [13, 

p. 48]. The question of whether the condition (*) is necessary for Ec(B)  to be 

nonempty, for every nonempty and compact subset B, in non-pseudometrizable 

linear spaces remains open. 

PROPOSITION 2.1. Let Y be a topological linear space and let C be a convex cone 

in Y, which does not fulfil the condition (*). Suppose that lin C satisfies the First 
Axiom of Countability, then there exists a nonempty compact set B in Y with 

E c ( B ) = O .  
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PROOF. As C does not satisfy (*) we can find a closed subspace L in lin 

such that C f ) L  is a linear space but C f3  L is not linear. Observe  that 

E,- (B)  C_ Ecru(B) for every set B. Hence  it is sufficient to prove that Ecn~_(B) = 
for some nonempty  and compact  set B. Without  loss of general i ty we may 

assume that Y = L and C fq L = C. Thus we get that C is a linear space while C 

is not and Y is first countable.  

First we shall show that for every x E C such that - x ~  C there exists a 

sequence (x.)~ ~ tending to - x with x. C C, - x. ~ C for n = 1,2 . . . . .  As (~ is a 

linear space, and Y satisfies the I Ax iom of Countabi l i ty  we get that  - x E (~ if 

x E C and there exists a sequence (c.)~ ~ converging to - x such that  c. E C for 

n = 1,2 . . . . .  Define x. = (1/n)x +(1 - fin)c° for n = 1,2 . . . . .  Since C is convex 

we get that x. C C and - x . ~  C for n = 1,2 . . . . .  Moreover  the sequence (x.)~=l 

tends to - x. Hence  we obtain that for every x E C such that - x ~ C and for 

every ne ighbourhood  of zero U we can find y E C  so that x + y E U  and 

- y~ :C  
Since C is not a linear space, we can find y. E C so that - y. ~ C. Let (U.)~_l 

be a base of ne ighbourhoods  of 0. Let y, C C be such that yo+ y~ E U, and 

- y~ ~ C. Then  y. + y~ E C and - (yo + y,) ~ C, since - yo ~ C. Inductively we 

determine a sequence (y.)~ ~ for which y.+ZT=, y~ E U., y. E C and - y . ~  C 

for n = 1,2 . . . . .  Then  Z~-~ y. = - yo. Put 

Then  B is nonempty  and compact ,  but -yo_-<XT_, y,, 5~=, y~;~ - y o ,  E~=, y, __< 

Y~+,~ y~ and E72, ~ y,;~ Y~7=, y~ for n = 1,2 . . . . .  which implies that  Ec(B)= 0 .  

COROLLARY 2.1. Let Y be a Hausdorff topological linear space, C a convex 
cone in Y satisfying the condition (*). I]: B is nonempty, C-compact subset of Y, 
i.e. B M (y + C) is nonempty compact for some y E Y, then E c ( B ) / 0 .  

The proof  follows from T h e o r e m  2.2 since Ec( (y  + C) n B) c_ Ec(B). • 

Har t ley ' s  result [9], that  in R" E c ( B ) ~  0 for every nonempty ,  C - c o m p a c t  set 

B follows from R e m a r k  2.1 and Corol lary  2.1. 

Using R e m a r k  2.2 (ii) and Corol lary  2.1 we get that  E c ( B ) ~  0 for every 

nonempty  C - c o m p a c t  (hence for compac t  as well) set B, whenever  t~ is pointed,  

in any Hausdorf f  topological  space Y. Moreove r  by Corol lary  2.1 and R e m a r k  

2.2 (iii) we obtain that  the set of so-called weak or  quasi-maximals [6,7,15,16] is 

nonempty  if B is n o n e m p t y  and C-compac t .  This is the case when yz =< y2 means  

y2-  y, E int C for yt, y2 E Y, where int C denotes  the interior of C. 
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COROLLARY 2.2. Let Y be a Hausdorff topological linear space, C be a convex 

cone and M be a linear supspace of Y such that M n lin C is finite dimensional. 

Then for every nonempty, C-compact subset B of M, E c ( B ) ~  0 .  

PROOF. If L is a closed subspace of M such that C n M N L = C N L is a 

linear space, then C N L must be finite dimensional, since then C n L c_ 

M Olin C. Hence C O L = C O L is a linear space, which proves that C n M 

admits the condition (*) on M. As EcnM (A)  C_ Ec(A  ) for any subset A of M, we 

get by Corollary 2.1 that E c ( B ) ~  0 .  • 

COROLLARY 2.3. Let Y be a Hausdorff topological linear space and C be a 

convex cone. Then for every non-empty, C-compact subset B of Y, such that 

(span B)  Olin C' is finite dimensional, Ec(B ) ~ 0 .  
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